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Abstract. Given a wind-farm with known dimensions and number of wind-turbines, we try to find the optimum positioning

of wind-turbines that maximises wind-farm energy production. In practise, given that optimisation has to be performed for

many wind directions and taking into account the yearly wind distribution, such an optimisation is computationally only

feasible using fast engineering wake models such as, e.g., the Jensen model. These models are known to have accuracy issues,

in particular since their representation of wake interaction is very simple. In the present work, we propose an optimisation5

approach that is based on a hybrid combination of Large-Eddy Simulations (LES) and the Jensen model, in which optimisation

is mainly performed using the Jensen model, and LES is used at a few points only during optimisation for online tuning of the

wake-expansion coefficient in the Jensen model, and for validation of the results. An optimisation case study is considered, in

which the placement of 30 turbines in a 4 by 3 km rectangular domain is optimised in a neutral atmospheric boundary layer.

Both optimisation for single wind direction, and multiple wind directions are discussed.10

1 Introduction

Wind-turbines are often clustered together in wind-farms, to save the cost of land and cabling. However, aerodynamic interac-

tions between the turbines in the form of so called wakes (low speed regions) that form behind wind-turbines, lead to power

reductions in ‘waked’ turbines of up to 50% compared to a lone standing wind-turbine in undisturbed flow (Barthelmie et al.,

2010). These interactions are very important when considering the topological placement of wind-turbines in large wind-farms.15

In order to optimally design wind-farm layout, models are necessary that accurately predict the aerodynamic turbine-wake

interaction effects. Such models need to be very fast, as wind-farm design optimisation needs to consider the full spectrum

of wind directions over a wind-farm’s operational lifetime, thus requiring many thousands of model evaluations. Moreover,

wind-farm design is a multidisciplinary problem in which the aerodynamic wake-interaction model is only one of the models,

next to turbine load models, lifetime analysis, economic investment models, etc. (see, e.g. Zaaijer, 2013). Today, the wake20

model that is most used is the Jensen model (Jensen, 1983; Katic et al., 1986). It is a simple and fast model, but is known to

be inaccurate when looking at individual power predictions of turbines in various waked conditions (Barthelmie et al., 2009;

Gaumond et al., 2014; Niayifar and Porté-Agel, 2015).

In the last five years, the detailed simulation of wind-farm atmospheric-boundary-layer interaction and turbine-wake inter-

actions based on high-fidelity simulation tools such as Large-Eddy Simulations (LES) have become very popular (see, e.g.,25
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Meyers and Meneveau, 2010; Calaf et al., 2010; Yang et al., 2012; Meyers and Meneveau, 2013; Wu and Porté-Agel, 2013;

Allaerts and Meyers, 2015), leading to many new insights in the flow physics of wind-farms. Given known and constant meteo-

rological conditions, these type of models provide a detailed time-resolved prediction of the turbulent flow in a wind-farm with

resolution of spatial flow structures in the order of 20 meters, and temporal fluctuations in the order of 10 seconds. Although

it is computationally infeasible in LES of wind-farms to resolve all the detailed flow physics, such as, e.g., the turbine blade-5

boundary layers (with length scale below a millimeter), these models do lead to quite accurate predictions of wakes and wake

merging, when compared to wind-tunnel and field experiments (Porté-Agel et al., 2011; Wu and Porté-Agel, 2013; Munters

et al., 2016a). Unfortunately, LES of wind-farms requires supercomputing, and simulation times that are several hours to days

for one single atmospheric condition. Hence, these models are not useful for layout optimisation purposes.

Layout optimisation of wind-farms using fast wake models has been investigated in numerous studies (Marmidis et al., 2008;10

Emami and Noghreh, 2010; Kusiak and Song, 2010; González et al., 2010; Saavedra-Moreno et al., 2011; Du Pont and Cagan,

2012; Chowdhury et al., 2012; Samorani, 2013; Chen et al., 2013). However, the accuracy of such optimisation results has

always remained a concern in view of the limited reliability of wake models, and this has recently led to a renewed interest in

the formulation of accurate, but fast wake models (Stevens et al., 2015; Niayifar and Porté-Agel, 2015). In the current work,

we investigate a hybrid approach in which the Jensen model is used during optimisation, but we use LES to gradually adapt15

the Jensen Model, and verify the optimisations results.

This paper is organised as follows. In Section 2 the mathematical formulation for the optimisation problem is stated, and

the simulation models (both Jensen and LES), and the optimisation methodology are introduced. In Section 3, results are

presented. First, the different steps in the algorithm are highlighted for a single wind direction optimisation case in §3.1–

§3.3. Subsequently, in §3.4, some results for optimisation with multiple wind directions are discussed. Finally, conclusions are20

presented in Section 4

2 Problem Description and Methodology

In §2.1, the optimisation problem description is introduced. Subsequently, the Jensen model is briefly reviewed in §2.2. The

LES simulation environment is discussed in §2.3, and finally the optimisation method is presented in §2.4.

2.1 Problem Description25

Consider a set of Nt turbines that are to be placed in a fixed domain Ω. Given constant atmospheric conditions and wind

direction, the average power output of a turbine at position xi in the wind-farm is:

P i(xi, t) =
1
T

T∫

0

Pi(xi)dt, (1)

where Pi(xi, t) corresponds to the instantaneous power output of the turbine, which is subject to turbulent wind fluctuations,

and T is a time averaging window that is sufficiently long to average out the turbulence effects. Note that the Jenson model (cf.30
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§2.2) directly predicts P i of turbines in a wind-farm, while, e.g., experimental measurements, as well as results from LES (cf.

§2.3) yield Pi(xi, t), and thus explicitly require above time averaging.

The optimisation problem that we consider is formulated as follows

maximise
xi

Nt∑

i=1

P i(xi)

subject to xi ∈ Ω, ∀i ∈ {1, · · · ,Nt}

‖xi−xj‖2 ≥ dmin, ∀i, j ∈ {1, · · · ,Nt}, i 6= j

(2)

where dmin is a constraint on the minimum distance between turbines. In theory, the minimum distance between turbines is5

1.0D (with D the rotor diameter). In the current study, we will consider a minimum distance dmin = 2.0D for all optimisation

cases.

The solution of above optimisation problem requires a model for P i(xi). This is discussed next in §2.2 for the Jensen model,

and §2.3 for the LES model. To solve the above optimisation problem, we use the cross-entropy optimisation method (De Boer

et al., 2005; Rubinstein, 1999) in combination with a hybrid Jensen–LES model as discussed in §2.4.10

2.2 The Jensen wake model

We briefly review the Jensen wake model as originally developed by Jensen (1983); Katic et al. (1986).

The model commences by assuming that each turbine generates a radially and azimuthally uniform wake that linearly

expands with downstream distance from the turbine. Using simple mass conservation, this allows to describe the velocity

deficit generated by turbine i as15

∆Ui(si) =
1−

√
1−CT,i

(1 + kwsi/R)2
, si > 0, (3)

with CT,i the turbine thrust coefficient, and where si = (x−xi) · ef is the downstream axial distance from the turbine, and

ef the unit vector in the mean-flow direction. Obviously, si > 0. Upstream of a turbine, its own generated wake has a velocity

deficit ∆Ui = 0. Furthermore, kw is the linear wake-expansion coefficient, and R is the rotor radius. Correlations exist that20

relate kw to the incoming atmospheric boundary layer, e.g. (S. Lissaman, 1979; Frandsen, 1992),

kw =
u∗
U∞

=
κ

ln(zh/z0)
, (4)

is commonly used, with κ the Von Kàrmàn constant, zh the turbine hub height, and z0 and u∗ the surface roughness and

friction velocity of the incoming Atmospheric Boundary Layer. Note that in the current study, we will use LES to adapt kw

in our optimisation procedure as discussed in §2.4. Finally note that the wake expansion is vertically restricted by the ground25

once the wake radius grows larger than the turbine hub height. However, the ground is not directly modelled, but instead mirror

turbines are added below the ground, with wakes that are included in the wake merging model (S. Lissaman, 1979) (cf. below).
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In order to estimate the power output P i, the turbine’s incoming mean velocity is required. It is modeled as Ui,in = U∞−
∆Ui,in, with U∞ the wind-farm inflow velocity at hub height, and ∆Ui,in upstream velocity deficit experienced by turbine i.

The deficit ∆Ui,in is heuristically modelled by quadratically adding upstream wake deficits as follows

∆Ui,in =


∑

j∈Si

(∆Uj(sij))2




1/2

. (5)

Here Si is the set of all upstream turbines that have a wake that geometrically intersects with turbine i, and sij is the distance5

along the wind direction between turbine i and j. In order to include the effect of the ground on wake development, mirror

turbines (below the ground) are added to the set Si for each turbine whose wake is restricted by the ground. It is furthermore

possible that wakes only partially overlap, in which case the rotor area of the inflow turbine is split into regions with different

overlaps. More details on the approach can be found in Rathmann et al. (2007).

Once the turbine inflow velocities Ui,in are determined, the power per turbine is calculated as:10

P i(xi) =
1
2
CP,iρU

3
i,in, (6)

where CP,i is the wind-turbine’s power coefficient. For an ideal turbine, CP,i follows from axial momentum theory from, i.e.

CP,i =
1
2
CT,i[1− (1−CT,i)

1/2]. (7)

For a real turbine, CP,i can be expressed as function of CT,i and wind speed, either using a mapping specific to the turbine,

or blade-element momentum theory, and this can be straightforwardly used in the Jensen model. In the current study, we will15

simply use above ideal relationship, as our main focus is on the development and demonstration of the hybrid Jensen–LES

approach, and not so much on the specifics of the selected turbine model.

2.3 Large-eddy simulation Environment and Simulation Setup

Simulations are performed using SP-Wind, developed at KU Leuven (Meyers and Meneveau, 2010, 2013; Allaerts and Meyers,

2015; Goit and Meyers, 2015; Munters et al., 2016a). SP-Wind solves the filtered incompressible Navier–Stokes equations,20

which are given by

∇ · ũ = 0 (8)
∂ũ

∂t
+ ũ · ∇ũ = −1

ρ
∇p̃+∇ · τM −f (9)

where ũ(x, t) = [ũ1, ũ2, ũ3] is the resolved velocity field, p̃ is the pressure field, and τM is the subgrid-scale (SGS) model.

We use a standard Smagorinsky model (Smagorinsky, 1963) with Mason & Thomson’s wall damping (Mason and Thomson,25

1992) to model the SGS stress. Furthermore, −f represents the forces (per unit mass) introduced by the turbines on the flow.

In LES of wind-farm boundary layers, this turbine-induced force is commonly modelled using an actuator-disk model (ADM),

as full meshing of the turbine blades and geometry leads to computational grids that are too large for current-day computers.
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Expressed for turbine i, this force corresponds to (Meyers and Meneveau, 2010; Goit and Meyers, 2015):

f (i) =
1
2
C ′T,iV̂

2
i Ri(x)e⊥ i= 1 · · ·Nt, (10)

where e⊥ represents the unit vector perpendicular to the turbine disk, and Ri(x) is a geometrical smoothing function that

distributes the uniform surface force of the turbine over surrounding LES grid cells, with
∫

Ω
Ri(x)dx′ =A and A the turbine

disk area. Moreover, V̂i is the disk-averaged turbine velocity, and C ′T,i is the disk-based thrust coefficient. Unlike the conven-5

tional thrust coefficient CT (used in the Jensen model) which is based on undisturbed velocity far upstream of a turbine, C ′T,i

is defined using the velocity at the turbine-disk. It results from integrating lift and drag coefficients over the turbine blades,

taking design geometry and flow angles into account (cf. Appendix A in Goit and Meyers, 2015 for a detailed formulation).

Based on axial momentum theory, we have (Calaf et al., 2010):

CT =
C ′T

(1 +C ′T /4)2
(11)10

which provides a direct relation between the trust coefficient used in the Jensen model, and the disk-based thrust coefficient

used in the LES model. Finally, given the velocity field ũ(x, t) from a LES, the average power output for turbine i is determined

from

P i(xi) =
1
T

T∫

0

∫∫∫
f (i) · ũdxdt. (12)

In Figure 1 a typical snapshot of a horizontal velocity field ũ1(x, t) is shown, including an outline of the simulation domain15

that is considered in the current study. The main domain size is Ly×Lx×Lz = 8.0×6.0×1.0 Km3, where x is always the main

flow direction, and z is the vertical direction. The wind-farm is inserted in a subdomain Ω = 4.0Km× 3.0Km (also marked

on the figure). At z = 0 a classical high-Reynolds-number wall-stress boundary condition is used (Moeng, 1984; Bou-Zeid

et al., 2005), which is parametrized by the ground surface roughness z0, for which we use z0 = 0.1 m. At z = Lz a symmetry

condition is used, and in the y direction, periodic boundary conditions are used. Finally, at x= 0 an inflow boundary condition20

is used. The inflow is generated in a separate precursor simulation (also shown in Figure 1), which employs shifted periodic

boundary conditions to avoid artificial spanwise locking of the typical low-speed streaks observed in boundary layers (cf.

Munters et al., 2016b for details). For the precursor simulation, a domain size of 8.0× 6.0× 1.0 Km3 is selected.

For the discretization of the governing equations, SP-Wind uses a pseudo-spectral method in the horizontal directions,

applying the 3/2 rule for dealiasing (Canuto et al., 1988). In the vertical direction, a fourth-order energy-conservative finite-25

difference discretization scheme is used (Verstappen and Veldman, 2003). Non-periodic boundary conditions in the x-direction

are implemented using a fringe-region technique, with a fringe region located in the last 2 km of the domain (see Spalart and

Watmuff, 1993; Stevens et al., 2014; Munters et al., 2016b, a, for details). Mass is conserved by using a Poisson equation for

the pressure, that is solved using a direct solver. Finally, time integration is performed using a classical four-stage fourth-order

Runge–Kutta scheme. For the simulations discussed in this paper, a fixed time step of 0.4 seconds corresponding to a Courant–30

Friedrichs–Lewy (CFL) number of approximately 0.4 is used. The computational grid for the main domain corresponds to
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Figure 1. Snapshot of an instantaneous velocity field in the precursor domain and main simulation domain obtained from SP-Wind. Side

view (top), plan view (bottom); precursor (left), main (right). Wind-farm area Ω (white dashed); Fringe region (white dash-dot).

Table 1. Simulation Parameters

Total Domain Size (with Fringe Region) 8× 6× 1 km3

Total Domain Size (with Fringe Region) 6× 6× 1 km3

Optimisation Domain Size 4× 3× 1 km3

Turbine Diameter 100m

Turbine Height 100m

Friction velocity of inflow 1 m/s

Surface Roughness 0.1m

Computational Reynolds No. 100

Grid Size 256× 256× 80

Cell Size 31.25× 23.44× 12.5 m3

Time-step 0.4 seconds

Ny ×Nx×NZ = 256× 256× 80, and 256× 256× 80 in the precursor domain. Simulation parameters are summarised in

Table 1.

In the current study, we consider a rectangular fixed wind-farm domain Ω of 4.0 by 3.0 Km (cf. above), in which thirty

turbines are to be optimally placed. We take generic wind-turbines with a diameter ofD = 100 m, and hub height of zh = 100 m

each. The selected disk-based and standard thrust coefficients correspond to C ′T = 2.0, and CT = 8/9 respectively. The choice5

of turbines, simulation domain and selected computational grids correspond to the typical case set-ups found in Calaf et al.

(2010); Meyers and Meneveau (2013), and we refer the reader to these studies for detailed grid sensitivity analysis, etc.
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Figure 2. Instantaneous (blue) and cumulative mean (red) of total wind-farm power for a typical LES run.

Finally, simulations are initialized by first performing a spin-up of the turbulence in the precursor simulation. Starting from

a logarithmic mean profile with random perturbations, the precursor simulation is advanced in time for 15000 seconds so that

realistic turbulence can develop. Subsequently, for every wind-farm layout, precursor and main domain are run simultaneously,

and an additional spin-up period of 2000 seconds is simulated. This corresponds to at least 5 flow-through times of the main

domain. Finally, each case is run for 3600 seconds of wind-farm time (roughly corresponding to at least 9 flow-through times)5

to assemble wind-farm power statistics. We estimate the related statistical averaging error on the total power to be around 1.5%.

Figure 2 shows the instantaneous total wind-farm power and its cumulative average (calculated from t= 0) for a typical LES

run.

The spin-up of the precursor simulation is the most expensive (but needs to be done only once), amounting to 32 hours of

wall-clock time on the ThinKing cluster of the Flemish Super-Computer Centre, using 8 Ivy Bridge nodes consisting of two10

10-core ‘Ivy Bridge’ Xeon E5-2680v2 CPUs (2.8 GHz, 25 MB level 3 cache) for a total of 160 cores. Subsequent wind-farm

spin-up and averaging cases take around 14 hours of wall-clock time on the same processor layout.

2.4 Cross Entropy Optimisation Method

The Cross Entropy (CE) method was originally developed to estimate the probability of rare events. Later on, it was realised

that it is also very effective in solving difficult non-convex optimisation problems. The method is explained in detail by De Boer15

et al. (2005); Rubinstein (1999), among others. Here, we briefly review the main features of the approach, and further detail

how we use it in a hybrid Jensen–LES optimisation of wind-farm layout.

First of all, the optimisation problem (2) is slightly reformulated in order to better cope with the second inequality constraint

(as further discussed below, the first constraint is more straightforward to enforce directly). Therefore, we consider following

7
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non-smooth problem

max
xi

Nt∑

i=1

P i(xi) +
Nt∑

i=1

i−1∑

j=1

hij(xi,xj) (13)

s.t.

xi ∈ Ω, ∀i ∈ {1, · · · ,Nt}, (14)

where5

hij(xi,xj) =




−∞ ‖xi−xj‖2 < dmin

0 otherwise
(15)

This formulation is fully equivalent to (2).

The CE method for solving the optimal placement problem now essentially involves three steps. In a first step, a set of Ns

uniformly distributed random samples of the optimisation parameters xi are generated with a given mean value m(0) and

deviation d(0) (note that bothm and d have dimension 2×Nt). At startup (iteration 0), no prior knowledge of the optimisation10

problem is available, so we chose the mean and deviation such that the distribution spans the whole feasible parameter range

Ω. In the second step, samples are sorted according to their cost functional value. The best Nb <Ns samples are chosen, and

the mean m(k)
b and deviation d(k)

b of this set (in iteration step k) is calculated. In a third step, a next generation of samples

(iteration step k+ 1) is then created using a uniform distribution with mean and deviation

m(k+1) =m(k) +α(m(k)
b −m(k)) (16)15

d(k+1) = d(k) +α(d(k)
b −d(k)) (17)

where the parameter α is selected in the [0,1] range, specifying how conservative or exploratory the algorithm is. This procedure

continues until the end condition is met, which is usually set by specifying the maximum number of iterations. We also transfer

the optimum value in each generation to the next generation, so that the cost function value of the optimum in each generation

increases monotonically.20

The treatment of the constraint xi ∈ Ω is straightforward. Whenever a turbine location in a sample falls outside Ω, the

location is simply orthogonally projected on the boundary of Ω. Note that turbines in samples in the initial generation always

fall in Ω, but in later generations, this is not always the case. The treatment of the distance constraint is implicitly handled by

the cost function formulation, and does in principle not require any further attention.

Given the Jensen model, and an input for the wake expansion coefficient kw, the cross-entropy layout optimisation is summa-25

rized in Algorithm 1, and specific choices are documented. We run the Cross Entropy Optimisation scheme for Niter = 2000

iterations, however, we find it beneficial for convergence and computational efficiency to omit hij in the cost function during

the first M iterations, and only enforce hij constraint for k >M . We take M = 200 in our implementation.

The standard deviation of samples in the cross entropy scheme eventually converge to zero. Once the standard deviation has

become small, and if the algorithm is locked in a local optimum, it will not anymore break away from it. To reduce the chance30
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Algorithm 1: The outline of the Cross Entropy Optimisation Method for finding the optimum wind-farm layout. Values

used in the current study are Niters = 2000, Ns = 1000, M = 200.
Input: Value of the wake expansion parameter kw, domain Ω, minimum distance dmin.

Output: An optimum wind-farm layout that generates maximum amount of energy.

1 for k← 1 to Niters do

2 Generate Ns random layouts, where each random sample consists of a set coordinates xi (i = 1 · · ·Nt). Samples are uniformly

distributed with mean value of mk−1 and deviation of dk−1. Initial mean and deviation values are set to span the whole domain

Ω;

3 if k > 1 then

4 Replace the first sample with SOPT;

5 for j← 1 to Ns do

6 Calulate the total power of layout j (ommit hij in cost function for k ≤M );

7 Sort the Ns samples based on their total generated power in descending order.

8 Choose the best Nb samples (we use Nb = 0.4Ns).

9 Set mk−1
b and dk−1

b to be the mean and deviation of the best Nb samples.

10 Calculate mk, and dk using (16,17)

11 Set the best sample as the optimum layout SOPT;

of this happening, we reset the calculated value of d after 1000 iterations. For turbines with x coordinate less than 0.5 Km or

bigger than 3.5 KM, we reset their corresponding deviation to [0.5,0.5] and for the rest we reset the deviation to [Lx/2,Ly/2].

This can be interpreted as running the Cross Entropy in two stages. Both run for 1000 iterations: the first runs starting with

a uniform distribution in Ω, and the second starts with the optimum layout of the first stage as the mean value for its initial

population. In the interest of simplicity, this detail is not included in the outline of Algorithm 1.5

In the current manuscript, we propose a hybrid Jensen–LES approach for wind-farm layout optimisation. To that end, we

employ Algorithm 1 in an iterative loop in which kw is fitted to a set of LES data that is gradually adapted to the layouts that

are explored during optimisation. Fitting kw is also a non-convex optimisation problem, and therefore, we simply use the CE

method again, but now for a scalar field. This is summarized in Algorithm 2. For this fitting, we found a number of iterations

Niters = 50 sufficient for good convergence.10

Finally, the hybrid Jensen–LES optimisation approach is summarized in Algorithm 3. In a first step, a set of NL LES cases

of regular and random layouts are generated. This set is used to fit kw using Algorithm 2. Subsequently, layout optimisation

is performed using Algorithm 1. The optimal layout is then added to the set of LES cases, and a number of NR− 1 additional

random layouts are added as well. Moreover, the NR LES cases with lowest generated powers are removed from the set. This

new set is used to refit kw, subsequently starting a new layout optimisation, etc. By doing so, the LES data set used for fitting15

is gradually taking more optimal layouts into account, while layouts that are least optimal are removed from the set.
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Algorithm 2: The outline of the Cross Entropy Optimisation Method for optimising the wake expansion coefficient in the

Jensen Model using the LES data. Values used in the current study are Niters = 50, N = 1000.
Input: Total power of NWF wind-farm layouts obtained from LES simulations, each having NWT wind-turbines.

Output: An optimum value for kw that minimises the error between predicted LES wind-farm power and Jensen wind-farm power.

1 Set the initial mean value m(0) and deviation s(0);

2 for i← 1 to Niters do

3 Generate N random scalar samples, with uniform distribution with mean value of m(i−1) and deviation of s(i−1);

4 if i > 1 then

5 Replace the first sample with kw,OPT ;

6 for j← 1 to N do

7 Using sample j as kw in Jensen Model, calculate the relative power of NWF − 1 layouts and divided that to the power of the

base case.

8 Define ej as the sum of absolute value of errors between Jensen model output and LES data;

9 Sort the N samples based on their error value ej for j ∈ {1, · · · ,N}, in ascending order.

10 Choose the first (best) Nb samples (we normally set Nb = 0.4N ).

11 Set m(i) and s(i) to be the mean and deviation of the best Nb samples.

12 Set the best sample as the optimum value kw,OPT.

Finally we remark here that Algorithm 2 can in principle be used to fit more complicated relations for kw. For instance,

introducing the heuristic dependence kw = a+bx (or similar expressions), and fitting a, and b instead of the mean value of kw,

may be interesting approach to represent the downstream development of kw in the wind-farm related to increased turbulence

levels. In the current work, we did not further explore this type of parametrizations of kw, as a simple fit of the mean value

already leads to very satisfactory results (cf. next section).5

3 Results

In the current section, optimisation results are discussed. First of all, in §3.1, the initial LES database for calibration of the

Jensen model is constructed. Next, optimisation results of the Jensen only model are discussed in §3.2. Subsequently, hybrid

Jensen–LES optimisation results are presented in §3.3. Finally, optimisation for multiple wind directions is discussed in §3.4.

3.1 Set-up of LES database for initial calibration10

A first step in Algorithm 3 is the generation of a LES database that is a starting point for the calibration of the Jensen model.

Here we choose a mix of staggered, aligned layouts, and randomly generated layouts. An overview of the different cases, and

their generated power is provided in Table 2. We normalize all results with the power output of a ‘wakeless’ wind-farm, i.e. a

wind-farm consisting of turbines that all have undisturbed inflow. In order to normalize all LES results in the same way, we use
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Algorithm 3: Main Algorithm. A summary of the overall procedure used to obtain the optimum wind-farm layout. Values

used in the current study are NL = 10, and NR = 5.
Input: Dimensions Lx and Ly of the wind-farm domain, Number of wind-turbines NWT , Diameter of wind-turbines D, Minimum

acceptable distance between the wind-turbines dmin

Output: Optimum value of wake expansion coefficient, An optimum wind-farm layout

1 Generate a set of NL LES cases for initial calibration of the Jensen model (choose aligned, staggered, and random layouts)

2 Using the available LES data and Algorithm 2, optimise the wake expansion coefficient for the Jensen Model

3 Using Algorithm 1, find the optimum wind-farm layout

4 Verify the optimisation results using LES

5 Add the optimum layout to the set of LES cases; add an additional set of NR− 1 random layouts (that satisfy all constraints); remove

NR (< NL) cases that have the lowest cost function from the LES data set

6 Repeat Steps 2 to 5 until the error between the LES and Jensen Model in the optimal layout is less than a pre-specified threshold

Table 2. Large Eddy Simulation results for different wind-farm layouts. Power output normalized with respect to total power of a wind-farm

consisting of ‘first-row’ turbines. Average LES power is 69.97%.

Case No. Description Relative wind-farm Power

1 Aligned with 5D× 5D Spacing 51.81%

2 Aligned with 6D× 5D Spacing 56.76%

3 Aligned with 7D× 5D Spacing 60.80%

4 Aligned with 8D× 5D Spacing 64.36%

5 Staggered with 8D× 5D Spacing 83.60%

6 Gradually staggered with 8D Spacing 87.40%

7 Randomly generated with dmin = 2D 79.28%

8 Randomly generated with dmin = 3D 76.16%

9 Randomly generated with dmin = 4D 78.66%

10 Randomly generated with dmin = 5D 80.49%

the averaged power output of turbines located in the first row of the aligned and staggered layouts and multiply it by Nt (= 30)

to find the ‘wakeless’ wind-farm output. We then state every wind-farm power output as a percentage of this ‘wakeless’ wind-

farm output. Looking at the results of Table 2 it is apparent that the aligned cases perform quite poor in terms of relative power

output, considerably worse than the staggered cases, but also worse than any of the random layouts that we investigated.

In Figure 3 the layout and relative power output of individual turbines are shown for the staggered, gradually staggered, and5

two of the random layouts. Wind direction is always from left to right. First of all, we remark that there is some variability
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Figure 3. Layout and relative turbine power output for four of the cases listed in Table 2. Turbine locations are marked with colored disk:

size and color are scaled with relative power.

at turbine level that is due to the limited averaging period of 3600 seconds. For example, this can be seen in the first row of

Figure 3, showing that after one hour of averaging, variability due to turbulent inflow is still about 5%. Further reducing this

turbulence-induced variability, may require averaging times in the order of 20 hours (Munters et al., 2016b), but over such

time periods, meteorological conditions are likely to have changed. At wind-farm level, the turbulence-induced variability is

reduced to about 1.5% as a result of accumulation of power output over the different turbines in the wind-farm.5

3.2 Comparison of Jensen model and LES results

Without access to reference results that can serve to tune kw in the Jensen model, it is possible to resort to Eq. 4 to determine

kw. Using this equation for our simulation set-up leads to

kw =
0.41

ln(100/0.1)
= 0.060

Here we briefly compare the Jensen model using this value with LES results. To do so, we use the 10 layouts presented in10

Table 2.

A comparison of flow fields as generated by the Jensen model and LES are shown in Figure 4. It is appreciated that the

averaged flow data of LES are much smoother as a result of turbulent mixing. Moreover, some features are not represented at
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Figure 4. Comparison of Jensen Model and LES for an aligned and random layout.

all by the Jensen model. For instance, in the random layout, it is appreciated that side-by-side wakes can influence each other.

Such behaviour is not parametrized in the Jensen model.

However, the most relevant property from a power optimisation point of view is the total error on the predicted power. In

table 3, the average power output from LES and the Jensen model are compared. It is appreciated that the Jensen model using

kw = 0.060 is very accurate for some cases, but not so for others. In particular, the cases that have a higher relative power5

extraction are generally predicted worse by the Jensen model, than the cases with a lower relative power (the most prominent

exception is Case 6). Another trend is that the regular cases are better predicted than the irregular cases. In the context of

optimisation, it is however not important for the Jensen model to be accurate over a wide range of different layouts. Far away

from the optimal layout, the required accuracy can be allowed to be considerably lower than close to the optimum. In this sense,

Algorithm 3 gradually adapts the Jensen model through its wake expansion coefficient to better fit more performing layouts.10

Finally, looking at turbine level in Figure 5 for one of the random layouts (i.e. Case 10), it is seen that errors at turbine level

are much bigger than the error on the accumulated power reported in Table 3. Again, from an optimisation point of view, this is

less of an issue, as long as coupled approach in combination with LES is used to adapt the model and verify the overall results

close to the optimum. We further notice here that the statistical errors on the averaged turbine power output from LES are still

significant due to the limited time of averaging (in the order of 5% – cf. discussion in §3.1).15
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Table 3. Comparing outputs of LES and Jensen Wake Model with kw = 0.060.

Case
Relative Power

(LES)
Relative Power
(Jensen Model) Error

Aligned 5D× 6D 51.21% 52.30% −1.09%

Aligned 6D× 6D 55.93% 57.98% −2.05%

Aligned 7D× 6D 60.13% 62.88% −2.75%

Aligned 8D× 6D 63.34% 66.83% −3.50%

Staggered 8D 82.33% 86.81% −4.48%

Gradual Staggered 8D 85.77% 89.18% −3.41%

Random1 78.29% 85.20% −6.91%

Random2 74.77% 82.30% −7.53%

Random3 77.96% 84.95% −6.99%

Random4 79.17% 84.04% −4.87%
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Figure 5. Comparing the wind-turbine power generation obtained from LES data (black font) and Jensen Model (red font). Turbine locations

are marked with colored disk: size and color are scaled with relative power.

3.3 Hybrid Jensen–LES optimisation

Using Algorithm 3, we now optimize the wind-farm layout with a single constant wind direction given the set-up in Figure 1,

and wind coming from the left. Optimization over different wind directions is briefly discussed in §3.4. For the single wind-

direction case considered here, only three outer iterations are required in the algorithm to converge to an optimal layout and

optimally tuned Jensen model. Intermediate results of these iterations are discussed below.5

Iteration 1: We start Algorithm 3 with the initial cases shown in Table 2. Using these 10 cases, we use Algorithm 2

to optimise the value of kw finding a value of kw = 0.055. Subsequently, this value is used to optimize the layout using

Algorithm 1. The resulting optimal layout is shown in Figure 6. Table 4 summarizes the relative LES and Jensen power, and
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Table 4. Iteration 1: Comparing outputs of LES and Jensen Wake Model with kw = 0.055.

Case No.
Relative Power

(LES)
Relative Power
(Jensen Model) Error

Aligned 5D× 6D 51.21% 49.59% 1.62%

Aligned 6D× 6D 55.93% 55.40% 0.53%

Aligned 7D× 6D 60.13% 60.17% −0.04%

Aligned 8D× 6D 63.34% 64.22% −0.88%

Staggered 8D 82.33% 85.78% −3.46%

Gradual Staggered 8D 85.77% 92.27% −6.50%

Random1 78.29% 84.52% −6.23%

Random2 74.77% 81.23% −6.46%

Random3 77.96% 84.51% −6.55%

Random4 79.17% 83.27% −4.10%

Optimum iter. 1 90.51% 93.13% −2.62%

errors for the 10 initial training cases, as well as for the newly obtained optimal layout. The relative power generated by the

newly found optimum corresponds to 90.5% (evaluated using the LES), but the error with the Jensen model is still noticeable,

i.e. −2.62%.
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Figure 6. Optimal layout for a single wind direction obtained after Iteration 1. Turbine locations are marked with colored disk: size and color

are scaled with relative power.

Iteration 2: We add optimal layout 1 and four additional random layouts to the LES database, and remove the 5 layouts

with lowest relative power. Using Algorithm 2, we find a new value kw = 0.036 that best fits the Jensen model to the LES data.5

Subsequently, using Algorithm 1, a new optimal layout is found, which is shown in Figure 7. Furthermore, an overview of

relative powers from LES and Jensen is shown in Table 5. It is appreciated that the new optimal layout leads to a relative power
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Figure 7. Optimal layout for a single wind direction obtained after Iteration 2. Turbine locations are marked with colored disk: size and color

are scaled with relative power.

Table 5. Iteration 2: Comparing outputs of LES and Jensen Wake Model with kw = 0.036.

Case No.
Relative Power

(LES)
Relative Power
(Jensen Model) Error

Staggered 8D 82.33% 79.01% 3.32%

Gradual Staggered 8D 85.77% 93.06% −7.29%

Random1 78.29% 81.81% −3.52%

Random3 77.96% 82.27% −4.31%

Random4 79.17% 77.80% 1.37%

Random5 79.54% 82.06% −2.52%

Random6 76.01% 78.67% −2.65%

Random7 80.96% 83.50% −2.54%

Random8 76.25% 78.04% −1.79%

Optimum iter. 1 90.51% 90.17% 0.34%

Optimum iter. 2 92.04% 91.88% 0.17%

of 92.8% (evaluated using LES), but in contrast to the first iteration, the error with the Jensen model remains now limited to

0.17%.

As can be seen, the two optimum layouts, although obtained using different values of kw, have the same general structure.

Iteration 3: We repeat the procedure a third time, and find (almost) the same value for kw. Only the fourth digit differs and

the resulting new optimal layout remains the same. Moreover, the error between the Jensen model and the LES is below 1%,5

which corresponds roughly to the statistical averaging accuracy of the LES. We conclude that the algorithm is converged.
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Table 6. Optimum values of kw obtained in different iterations of Algorithm 3

Iteration No. optimum kw

Relative LES Power of
correspnding optimum layout

1 0.055% 90.51%

2 0.036% 92.04%

3 0.036% N/A

After initial set-up of the LES database, each main optimization step requires 2.5× 106 Jensen evaluations per iteration and

5 LES evaluations. Wall time for the Jensen evaluations (per iteration) corresponds roughly to 1,25 hours on 1 Ivy Bridge

node of the ThinKing cluster of the Flemish Super-Computer Centre. Total wall time for LES (per iteration, and excluding the

precursor spin-up time – cf. §2.3) amounts to approximately 70 hours on 8 nodes of the Flemish Super-Computer, equivalent

to 560 node-hours. Even though the Jensen model is 500000 times more evaluated per iteration than LES, the total LES cost is5

roughly 500 times more expensive, and the LES wall time roughly 50 times longer.

Given this single wind direction, the optimal layout leads to a relative wind-farm performance of around 93% of a wakeless

windfarm which is considerably higher than a typical aligned or staggered layout. Moreover, looking at the layout that was

found in Figure 7, it is observed that turbines are grouped into two main clusters, one at the front of the farm, and one at the

back of the farm, leaving a large stream-wise distance in between for wake recovery. Obviously, this result is particular for a10

single wind direction. In the next section, we study the cases with multiple wind directions.

3.4 Optimization for multiple wind directions

We now consider optimisation over a wind-direction distribution. Two cases are considered. The first corresponds to a uniform

wind distribution over an angle of ±7.5◦, representing a case with a dominant wind direction. The second corresponds to a

uniform wind distribution over an angle of ±180◦, representing a case without a dominant wind direction.15

In order to properly represent power output over the wind distribution using the Jensen model, we sample the uniform

distributions in 1.5◦ increments. For LES evaluations, we use a much coarser sampling: for the dominant wind-direction case

only 3, and for the uniform 360◦ case we use 8 directions. The error between Jensen model and LES is only defined relying on

these distinct directions. In this way, the overall computational costs related to LES remains limited compared to the additional

Jensen model evaluations that are performed.20

We first focus on the dominant wind direction case, and perform an optimisation using the Jensen model, and kw = 0.036

obtained in previous section. An overview of the errors between Jensen model and LES for the optimal layout is given in

Table 7. It is appreciated that errors are already below 2% for all directions, and therefore we do not further perform iterations

using Algorithm 3 here. The overall optimal power output corresponds to 93.67%, and the related layout is shown in Figure 8.

It is appreciated that the optimal layout for the dominant wind direction very much resembles the layout for the single wind25

direction case. Turbines are again clustered in two large groups, one in front and one at the back of the wind farm.
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are scaled with relative power.

Table 7. Dominant wind-direction case – evaluation of optimal layout. Relative power for 3 different wind directions comparing outputs of

LES and Jensen Wake Model with kw = 0.036.

Wind direction
(degrees)

Relative Power
(LES)

Relative Power
(Jensen Model) Error

0 93.08% 91.91% 1.17%

7.5 94.27% 93.21% 1.06%

−7.5 93.44% 92.43% 1.02%

average (0,7.5,−7.5) 93.67% 92.51% 1.08%

average (−7.5 : 1.5 : 7.5) − 92.53% −

Finally, we look at optimisation for the uniform wind distribution. Again we perform optimisation using the Jensen model

and kw = 0.036. An overview of the errors for the optimal layout is provided in Table 8. Also now, errors are overall relatively

low, so that for sake of saving computational resources, we do not perform further iterations using Algorithm 3. We further find

that overall, the average power output of the optimised layout corresponds to 93.45%. This compares to 71.73%, and 75.25%

for the aligned 8D×6D and for staggered layout respectively. The optimal layout itself is shown in Figure 9. In contract to the5

layout found for the dominant wind direction, now turbines are spread out much more evenly throughout the domain.

4 Conclusions

In the current work, we proposed a hybrid Jensen–LES approach for layout optimisation of wind-farms. The Jensen model is a

wake model that is sufficiently fast to allow in principle wind-farm optimisation over different wind-directions, and using global

optimisation approaches that take into account the non-convex nature of the optimisation problem. Large-eddy simulations10

are much more accurate then the Jensen model, but are by orders of magnitude too slow to be used for wind-farm layout
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Table 8. Uniform 360◦ case – evaluation of optimal layout. Relative power for 8 different wind directions comparing outputs of LES and

Jensen Wake Model with kw = 0.036.

Wind direction
(degrees)

Relative Power
(LES)

Relative Power
(Jensen Model) Error

0 87.11% 89.16% −2.05%

45 96.08% 96.06% 0.03%

90 94.75% 94.37% 0.39%

135 96.27% 95.27% 1.00%

180 87.97% 89.41% −1.45%

−135 97.36% 96.35% 1.01%

−90 94.59% 94.37% 0.23%

−45 95.46% 94.91% 0.55%

average 93.45% 93.55% −0.10%

optimisation. Therefore, we introduce a nested optimisation approach in which the Jensen model is used as a surrogate model.

In the inner loop, the Jensen model is used to perform the layout optimisation, while in an outer loop, the wake expansion

coefficient in the Jensen model is adapted to better fit LES results of the gradually evolving optimal layouts.

In the current study, layout optimisation of a wind-farm of 30 turbines on a 4Km×3Km area is considered. For this set-up, we

found that a iterative fitting of the average wake expansion coefficient in the Jensen model during optimization to be sufficient,5

leading to errors below 1% for the optimal layout. For larger wind-farm layouts, wind-farm areas that are more complex, or

including different atmospheric stratification regimes, it may be necessary to consider a more complex parametrization of the
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wake expansion coefficient. This may include dependence of the wake expansion coefficient on wind direction, Obhukov scale,

or downstream location in the wind-farm. These are topics for further research.

Finally, the layouts found for the current set-up differed greatly depending on the wind-direction scenario. In case of a domi-

nant wind directions, turbines were clustered together at the front and back of the wind-farm area, allowing for maximum wake

recovery in between. For a 360◦ uniformly distributed wind rose, turbines are evenly spread out over the domain. However, this5

is a result from optimisation of energy yield only, given a number of turbines and wind-farm area, and the effect of wake–wake

and wake–boundary-layer interaction. In practise, wind-farm layout optimisation is a multidisciplinary problem that includes

effects and costs of turbine loading, costs of installation, maintenance, cabling, etc. The full inclusion of a hybrid Jensen–LES

model in such an optimisation framework is also an important topic of further research.
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